add: higher half kernel, NOT WORKING

This commit is contained in:
starnakin 2024-10-14 15:57:11 +02:00
parent 41786ea523
commit 5969dcca54
3 changed files with 125 additions and 103 deletions

View File

@ -1,29 +1,41 @@
ENTRY(_start)
ENTRY (_start)
SECTIONS
{
. = 2M;
. = 0x00100000;
/* The kernel will live at 3GB + 1MB in the virtual address space, */
/* which will be mapped to 1MB in the physical address space. */
/* Note that we page-align the sections. */
.text BLOCK(4K) : ALIGN(4K)
_kernel_start = .;
.multiboot.data : {
*(.multiboot.data)
}
.multiboot.text : {
*(.multiboot.text)
}
. += 0xC0000000;
/* Add a symbol that indicates the start address of the kernel. */
.text ALIGN (4K) : AT (ADDR (.text) - 0xC0000000)
{
*(.multiboot)
*(.text)
}
.rodata BLOCK(4K) : ALIGN(4K)
.rodata ALIGN (4K) : AT (ADDR (.rodata) - 0xC0000000)
{
*(.rodata)
}
.data BLOCK(4K) : ALIGN(4K)
.data ALIGN (4K) : AT (ADDR (.data) - 0xC0000000)
{
*(.data)
}
.bss BLOCK(4K) : ALIGN(4K)
.bss ALIGN (4K) : AT (ADDR (.bss) - 0xC0000000)
{
*(COMMON)
*(.bss)
end_kernel = .;
*(.bootstrap_stack)
}
/* Add a symbol that indicates the end address of the kernel. */
_kernel_end = .;
}

View File

@ -8,7 +8,7 @@
#define VGA_WIDTH 80
#define VGA_HEIGHT 25
#define TERM_BUF ((uint16_t *)0xB8000)
#define TERM_BUF ((uint16_t *)0xC03FF000)
#define TERM_COUNT 10
struct screen {

View File

@ -1,110 +1,120 @@
/* Declare constants for the multiboot header. */
.set ALIGN, 1<<0 /* align loaded modules on page boundaries */
.set MEMINFO, 1<<1 /* provide memory map */
.set FLAGS, ALIGN | MEMINFO /* this is the Multiboot 'flag' field */
.set MAGIC, 0x1BADB002 /* 'magic number' lets bootloader find the header */
.set CHECKSUM, -(MAGIC + FLAGS) /* checksum of above, to prove we are multiboot */
# Declare constants for the multiboot header.
.set ALIGN, 1<<0 # align loaded modules on page boundaries
.set MEMINFO, 1<<1 # provide memory map
.set FLAGS, ALIGN | MEMINFO # this is the Multiboot 'flag' field
.set MAGIC, 0x1BADB002 # 'magic number' lets bootloader find the header
.set CHECKSUM, -(MAGIC + FLAGS) # checksum of above, to prove we are multiboot
/*
Declare a multiboot header that marks the program as a kernel. These are magic
values that are documented in the multiboot standard. The bootloader will
search for this signature in the first 8 KiB of the kernel file, aligned at a
32-bit boundary. The signature is in its own section so the header can be
forced to be within the first 8 KiB of the kernel file.
*/
.section .multiboot
# Declare a multiboot header that marks the program as a kernel.
.section .multiboot.data, "aw"
.align 4
.long MAGIC
.long FLAGS
.long CHECKSUM
/*
The multiboot standard does not define the value of the stack pointer register
(esp) and it is up to the kernel to provide a stack. This allocates room for a
small stack by creating a symbol at the bottom of it, then allocating 16384
bytes for it, and finally creating a symbol at the top. The stack grows
downwards on x86. The stack is in its own section so it can be marked nobits,
which means the kernel file is smaller because it does not contain an
uninitialized stack. The stack on x86 must be 16-byte aligned according to the
System V ABI standard and de-facto extensions. The compiler will assume the
stack is properly aligned and failure to align the stack will result in
undefined behavior.
*/
.section .bss
.align 16
# Allocate the initial stack.
.section .bootstrap_stack, "aw", @nobits
stack_bottom:
.skip 16384 # 16 KiB
stack_top:
/*
The linker script specifies _start as the entry point to the kernel and the
bootloader will jump to this position once the kernel has been loaded. It
doesn't make sense to return from this function as the bootloader is gone.
*/
.section .text
# Preallocate pages used for paging. Don't hard-code addresses and assume they
# are available, as the bootloader might have loaded its multiboot structures or
# modules there. This lets the bootloader know it must avoid the addresses.
.section .bss, "aw", @nobits
.align 4096
boot_page_directory:
.skip 4096
boot_page_table1:
.skip 4096
# Further page tables may be required if the kernel grows beyond 3 MiB.
# The kernel entry point.
.section .multiboot.text, "a"
.global _start
.type _start, @function
_start:
/*
The bootloader has loaded us into 32-bit protected mode on a x86
machine. Interrupts are disabled. Paging is disabled. The processor
state is as defined in the multiboot standard. The kernel has full
control of the CPU. The kernel can only make use of hardware features
and any code it provides as part of itself. There's no printf
function, unless the kernel provides its own <stdio.h> header and a
printf implementation. There are no security restrictions, no
safeguards, no debugging mechanisms, only what the kernel provides
itself. It has absolute and complete power over the
machine.
*/
# Physical address of boot_page_table1.
# TODO: I recall seeing some assembly that used a macro to do the
# conversions to and from physical. Maybe this should be done in this
# code as well?
movl $(boot_page_table1 - 0xC0000000), %edi
# First address to map is address 0.
# TODO: Start at the first kernel page instead. Alternatively map the first
# 1 MiB as it can be generally useful, and there's no need to
# specially map the VGA buffer.
movl $0, %esi
# Map 1023 pages. The 1024th will be the VGA text buffer.
movl $1023, %ecx
/*
To set up a stack, we set the esp register to point to the top of the
stack (as it grows downwards on x86 systems). This is necessarily done
in assembly as languages such as C cannot function without a stack.
*/
1:
# Only map the kernel.
cmpl $_kernel_start, %esi
jl 2f
cmpl $(_kernel_end - 0xC0000000), %esi
jge 3f
# Map physical address as "present, writable". Note that this maps
# .text and .rodata as writable. Mind security and map them as non-writable.
movl %esi, %edx
orl $0x003, %edx
movl %edx, (%edi)
2:
# Size of page is 4096 bytes.
addl $4096, %esi
# Size of entries in boot_page_table1 is 4 bytes.
addl $4, %edi
# Loop to the next entry if we haven't finished.
loop 1b
3:
# Map VGA video memory to 0xC03FF000 as "present, writable".
movl $(0x000B8000 | 0x003), boot_page_table1 - 0xC0000000 + 1023 * 4
# The page table is used at both page directory entry 0 (virtually from 0x0
# to 0x3FFFFF) (thus identity mapping the kernel) and page directory entry
# 768 (virtually from 0xC0000000 to 0xC03FFFFF) (thus mapping it in the
# higher half). The kernel is identity mapped because enabling paging does
# not change the next instruction, which continues to be physical. The CPU
# would instead page fault if there was no identity mapping.
# Map the page table to both virtual addresses 0x00000000 and 0xC0000000.
movl $(boot_page_table1 - 0xC0000000 + 0x003), boot_page_directory - 0xC0000000 + 0
movl $(boot_page_table1 - 0xC0000000 + 0x003), boot_page_directory - 0xC0000000 + 768 * 4
# Set cr3 to the address of the boot_page_directory.
movl $(boot_page_directory - 0xC0000000), %ecx
movl %ecx, %cr3
# Enable paging and the write-protect bit.
movl %cr0, %ecx
orl $0x80010000, %ecx
movl %ecx, %cr0
# Jump to higher half with an absolute jump.
lea 4f, %ecx
jmp *%ecx
.section .text
4:
# At this point, paging is fully set up and enabled.
# Unmap the identity mapping as it is now unnecessary.
movl $0, boot_page_directory + 0
# Reload crc3 to force a TLB flush so the changes to take effect.
movl %cr3, %ecx
movl %ecx, %cr3
# Set up the stack.
mov $stack_top, %esp
/*
This is a good place to initialize crucial processor state before the
high-level kernel is entered. It's best to minimize the early
environment where crucial features are offline. Note that the
processor is not fully initialized yet: Features such as floating
point instructions and instruction set extensions are not initialized
yet. The GDT should be loaded here. Paging should be enabled here.
C++ features such as global constructors and exceptions will require
runtime support to work as well.
*/
/*
Enter the high-level kernel. The ABI requires the stack is 16-byte
aligned at the time of the call instruction (which afterwards pushes
the return pointer of size 4 bytes). The stack was originally 16-byte
aligned above and we've pushed a multiple of 16 bytes to the
stack since (pushed 0 bytes so far), so the alignment has thus been
preserved and the call is well defined.
*/
# Enter the high-level kernel.
call kernel_main
/*
If the system has nothing more to do, put the computer into an
infinite loop. To do that:
1) Disable interrupts with cli (clear interrupt enable in eflags).
They are already disabled by the bootloader, so this is not needed.
Mind that you might later enable interrupts and return from
kernel_main (which is sort of nonsensical to do).
2) Wait for the next interrupt to arrive with hlt (halt instruction).
Since they are disabled, this will lock up the computer.
3) Jump to the hlt instruction if it ever wakes up due to a
non-maskable interrupt occurring or due to system management mode.
*/
# Infinite loop if the system has nothing more to do.
cli
1: hlt
jmp 1b
/*
Set the size of the _start symbol to the current location '.' minus its start.
This is useful when debugging or when you implement call tracing.
*/
.size _start, . - _start