Merge branch 'main' of git.chauvet.pro:starnakin/42_KFS

This commit is contained in:
0x35c 2024-09-11 15:52:22 +02:00
commit bdfac39bc9
4 changed files with 70 additions and 74 deletions

View File

@ -2,16 +2,8 @@
#include <stdint.h> #include <stdint.h>
#define GDT_BASE 0x00000800 #define GDT_ADDRESS 0x00000800
// sizeof(Segment Descriptor) * nb(Segment Descriptor) #define GDT_SIZE 7
#define GDT_SIZE 8 * 7
struct gdt_entry {
uint32_t limit;
uint32_t base;
uint8_t access_byte;
uint8_t flags;
};
// https://wiki.osdev.org/Global_Descriptor_Table#GDTR // https://wiki.osdev.org/Global_Descriptor_Table#GDTR
struct gdt_descriptor { struct gdt_descriptor {
@ -20,3 +12,21 @@ struct gdt_descriptor {
} __attribute__((packed)); } __attribute__((packed));
void initGdt(); void initGdt();
#define GDT_FLAG_64BIT_MODE 0b0010
#define GDT_FLAG_32BIT_MODE 0b0100
#define GDT_FLAG_PAGE_MODE 0b1000
#define GDT_FLAG_BYTE_MODE 0b1000
#define GDT_ACCESS_P_VALID 0b10000000
#define GDT_ACCESS_DPL_KERNEL_MODE 0b00000000
#define GDT_ACCESS_DPL_USER_MODE 0b01100000
#define GDT_ACCESS_S_CODE_OR_DATA 0b00010000
#define GDT_ACCESS_S_SYSTEM_SEGMENT 0b00010000
#define GDT_ACCESS_E_EXECUTABLE 0b00001000
#define GDT_ACCESS_E_NOT_EXECUTABLE 0b00000000
#define GDT_ACCESS_DC_CONFORM 0b00000100 // TODO UNDERSTAND THIS BIT
#define GDT_ACCESS_DC_NOT_CONFORM 0b00000000
#define GDT_ACCESS_RW_READABLE_FOR_CODE_WRITABLE_FOR_DATA 0b00000010
#define GDT_ACCESS_A_ACCESSED 0b00000001
#define GDT_ACCESS_A_NOT_ACCESSED 0b00000000

View File

@ -1,86 +1,52 @@
#include <stdint.h>
#include "gdt.h" #include "gdt.h"
#include "kprintf.h" #include "kprintf.h"
#include "string.h" #include "string.h"
extern void setGdt(void *); extern void set_gdt(uint32_t gdt_ptr);
void encodeGdtEntry(uint8_t *target, struct gdt_entry source) uint8_t gdt_entries[GDT_SIZE * 8];
struct gdt_descriptor *gdtr = (struct gdt_descriptor *) GDT_ADDRESS;
static void set_gdt_entry_value(uint8_t *target, uint32_t base, uint32_t limit, uint8_t access, uint8_t granularity)
{ {
// Check the limit to make sure that it can be encoded if (limit > 0xFFFFF) {
if (source.limit > 0xFFFFF) { kprintf(KERN_ERR, "GDT cannot encode limits larger than 0xFFFFF");
kprintf(KERN_ERR,
"GDT cannot encode limits larger than 0xFFFFF");
} }
// Encode the limit // Encode the limit
target[0] = source.limit & 0xFF; target[0] = limit & 0xFF;
target[1] = (source.limit >> 8) & 0xFF; target[1] = (limit >> 8) & 0xFF;
target[6] = (source.limit >> 16) & 0x0F; target[6] = (limit >> 16) & 0x0F;
// Encode the base // Encode the base
target[2] = source.base & 0xFF; target[2] = base & 0xFF;
target[3] = (source.base >> 8) & 0xFF; target[3] = (base >> 8) & 0xFF;
target[4] = (source.base >> 16) & 0xFF; target[4] = (base >> 16) & 0xFF;
target[7] = (source.base >> 24) & 0xFF; target[7] = (base >> 24) & 0xFF;
// Encode the access byte // Encode the access byte
target[5] = source.access_byte; target[5] = access;
// Encode the flags // Encode the flags
target[6] |= (source.flags << 4); target[6] |= (granularity << 4);
} }
uint8_t gdt_entries[8][7];
struct gdt_descriptor gdtr;
void initGdt() void initGdt()
{ {
gdtr.size = GDT_SIZE - 1; gdtr->size = 8 * GDT_SIZE - 1;
gdtr.base = GDT_BASE; gdtr->base = (uint32_t) &gdt_entries;
struct gdt_entry gdt_entry_null_descriptor = { set_gdt_entry_value(gdt_entries + 0x00, 0, 0, 0, 0); // Null segment
.base = 0, .limit = 0x00000000, .access_byte = 0x00, .flags = 0x0};
encodeGdtEntry(gdt_entries[0], gdt_entry_null_descriptor);
struct gdt_entry gdt_entry_kernel_mode_code_segment = { set_gdt_entry_value(gdt_entries + 0x08, 0, 0xFFFFF, GDT_ACCESS_P_VALID | GDT_ACCESS_DPL_KERNEL_MODE | GDT_ACCESS_S_CODE_OR_DATA | GDT_ACCESS_E_EXECUTABLE | GDT_ACCESS_DC_NOT_CONFORM | GDT_ACCESS_RW_READABLE_FOR_CODE_WRITABLE_FOR_DATA | GDT_ACCESS_A_ACCESSED, GDT_FLAG_32BIT_MODE | GDT_FLAG_PAGE_MODE); // Kernel code
.base = 0, .limit = 0xFFFFF, .access_byte = 0x9A, .flags = 0xC}; set_gdt_entry_value(gdt_entries + 0x10, 0, 0xFFFFF, GDT_ACCESS_P_VALID | GDT_ACCESS_DPL_KERNEL_MODE | GDT_ACCESS_S_CODE_OR_DATA | GDT_ACCESS_E_NOT_EXECUTABLE | GDT_ACCESS_DC_NOT_CONFORM | GDT_ACCESS_RW_READABLE_FOR_CODE_WRITABLE_FOR_DATA | GDT_ACCESS_A_ACCESSED, GDT_FLAG_32BIT_MODE | GDT_FLAG_PAGE_MODE); // Kernel data
encodeGdtEntry(gdt_entries[1], gdt_entry_kernel_mode_code_segment); set_gdt_entry_value(gdt_entries + 0x18, 0, 0x0, GDT_ACCESS_P_VALID | GDT_ACCESS_DPL_KERNEL_MODE | GDT_ACCESS_S_CODE_OR_DATA | GDT_ACCESS_E_NOT_EXECUTABLE | GDT_ACCESS_DC_CONFORM |GDT_ACCESS_RW_READABLE_FOR_CODE_WRITABLE_FOR_DATA | GDT_ACCESS_A_ACCESSED, GDT_FLAG_32BIT_MODE | GDT_FLAG_PAGE_MODE); // Kernel stack
struct gdt_entry gdt_entry_kernel_mode_data_segment = { set_gdt_entry_value(gdt_entries + 0x20, 0, 0xFFFFF, GDT_ACCESS_P_VALID | GDT_ACCESS_DPL_USER_MODE | GDT_ACCESS_S_CODE_OR_DATA | GDT_ACCESS_E_EXECUTABLE | GDT_ACCESS_DC_CONFORM | GDT_ACCESS_RW_READABLE_FOR_CODE_WRITABLE_FOR_DATA | GDT_ACCESS_A_ACCESSED, GDT_FLAG_32BIT_MODE | GDT_FLAG_PAGE_MODE); // User code
.base = 0, .limit = 0xFFFFF, .access_byte = 0x92, .flags = 0xC}; set_gdt_entry_value(gdt_entries + 0x28, 0, 0xFFFFF, GDT_ACCESS_P_VALID | GDT_ACCESS_DPL_USER_MODE | GDT_ACCESS_S_CODE_OR_DATA | GDT_ACCESS_E_NOT_EXECUTABLE | GDT_ACCESS_DC_NOT_CONFORM | GDT_ACCESS_RW_READABLE_FOR_CODE_WRITABLE_FOR_DATA | GDT_ACCESS_A_ACCESSED, GDT_FLAG_32BIT_MODE | GDT_FLAG_PAGE_MODE); // User data
encodeGdtEntry(gdt_entries[2], gdt_entry_kernel_mode_data_segment); set_gdt_entry_value(gdt_entries + 0x30, 0, 0xFFFFF, GDT_ACCESS_P_VALID | GDT_ACCESS_DPL_USER_MODE | GDT_ACCESS_S_CODE_OR_DATA | GDT_ACCESS_E_NOT_EXECUTABLE | GDT_ACCESS_DC_CONFORM | GDT_ACCESS_RW_READABLE_FOR_CODE_WRITABLE_FOR_DATA | GDT_ACCESS_A_ACCESSED, GDT_FLAG_32BIT_MODE | GDT_FLAG_PAGE_MODE); // User stack
struct gdt_entry gdt_entry_kernel_mode_stack_segment = { .base = 0x0, set_gdt(((uint32_t) gdtr));
.limit = 0x0,
.access_byte = 0x97,
.flags = 0x0D };
encodeGdtEntry(gdt_entries[3], gdt_entry_kernel_mode_stack_segment);
struct gdt_entry gdt_entry_user_mode_code_segment = {
.base = 0, .limit = 0xFFFFF, .access_byte = 0xFA, .flags = 0xC};
encodeGdtEntry(gdt_entries[4], gdt_entry_user_mode_code_segment);
struct gdt_entry gdt_entry_user_mode_data_segment = {
.base = 0, .limit = 0xFFFFF, .access_byte = 0xF2, .flags = 0xC};
encodeGdtEntry(gdt_entries[5], gdt_entry_user_mode_data_segment);
struct gdt_entry gdt_entry_user_mode_stack_segment = { .base = 0x0,
.limit = 0x0,
.access_byte = 0xF7,
.flags = 0x0D };
encodeGdtEntry(gdt_entries[6], gdt_entry_user_mode_stack_segment);
memcpy((void *)gdtr.base, (void *)gdt_entries, (size_t)GDT_SIZE);
/* load the gdtr registry */
asm("lgdtl (gdtr)");
/* initiliaz the segments */
asm(" movw $0x10, %ax \n \
movw %ax, %ds \n \
movw %ax, %es \n \
movw %ax, %fs \n \
movw %ax, %gs \n \
ljmp $0x08, $next \n \
next: \n");
} }

18
src/gdt/set_gdt.s Normal file
View File

@ -0,0 +1,18 @@
.intel_syntax noprefix
.section .text
.global set_gdt
set_gdt:
mov eax, [esp+4] // 1st parameter : pointer to the IDT
lgdt [eax]
mov ax, 0x10 // 0x10 is the offset in the GDT to our data segment
mov ds, ax // Load all data segment selectors
mov fs, ax
mov gs, ax
mov es, ax
mov ax, 0x18 // 0x18 is the offset in the GDT to our kernel stack
mov ss, ax
jmp 0x08:.flush // 0x08 is the offset to our code segment: far jump on it
.flush:
ret

View File

@ -1,6 +1,8 @@
#include "gdt.h" #include "gdt.h"
#include "shell.h" #include "shell.h"
#include "terminal.h" #include "terminal.h"
#include "power.h"
#include "gdt.h"
#include <stdbool.h> #include <stdbool.h>
#include <stddef.h> #include <stddef.h>
@ -22,6 +24,6 @@ void kernel_main(void)
/* Initialize terminal interface */ /* Initialize terminal interface */
terminal_initialize(); terminal_initialize();
/* initGdt(); */ initGdt();
shell_init(); shell_init();
} }