42_ft_transcendence/games/routine.py

303 lines
8.9 KiB
Python

from __future__ import annotations
from .objects.pong.PongGame import PongPlayer
from .objects.pong.Segment import Segment
from .objects.pong.Point import Point
from .objects.pong.Ball import Ball
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from .objects.pong.PongGame import PongGame
from . import config
import math
from asgiref.sync import SyncToAsync
import asyncio
VERTICALLY = 1
NORMAL = 2
def get_player_hitted(players: list[PongPlayer], segment: Segment) -> PongPlayer | None:
for player in players:
if (player.rail is segment):
return player
return None
def wall_collision(ball_angle: float, wall: Segment) -> float:
wall_angle: float = wall.angle()
cos: float = math.cos(wall_angle) * -1
sin: float = math.sin(wall_angle)
wall_angle: float = math.atan2(sin, cos)
incident_angle: float = ball_angle - wall_angle
reflection_angle: float = wall_angle - incident_angle
return reflection_angle
async def paddle_collision(game: PongGame, impact: Point, player: PongPlayer, inc_x: float, inc_y: float):
diff_x: float = player.rail.stop.x - player.rail.start.x
diff_y: float = player.rail.stop.y - player.rail.start.y
paddle_center_x: float = player.rail.start.x + diff_x * player.position.location
paddle_center_y: float = player.rail.start.y + diff_y * player.position.location
paddle_center: Point = Point(paddle_center_x, paddle_center_y)
rail_length: float = player.rail.length()
paddle_length: float = rail_length * config.PADDLE_RATIO
start_x: float = paddle_center.x - (diff_x * (paddle_length / 2 / rail_length))
start_y: float = paddle_center.y - (diff_y * (paddle_length / 2 / rail_length))
stop_x: float = paddle_center.x + (diff_x * (paddle_length / 2 / rail_length))
stop_y: float = paddle_center.y + (diff_y * (paddle_length / 2 / rail_length))
start: Point = Point(start_x, start_y)
stop: Point = Point(stop_x, stop_y)
paddle: Segment = Segment(start, stop)
hit_point: Point = Point(impact.x - inc_x, impact.y - inc_y)
if not paddle.is_on(hit_point):
await asyncio.sleep(0.1) # delay to create frontend animation
await SyncToAsync(game.goal)(player)
return None
paddle_angle: float = paddle.angle()
normal: float = paddle_angle - math.pi / 2
start_distance: float = paddle.start.distance(impact)
stop_distance: float = paddle.stop.distance(impact)
hit_percent: float = (start_distance) / (start_distance + stop_distance)
hit_percent = round(hit_percent, 1)
new_angle: float = normal + (math.pi * 0.85) * (hit_percent - 0.5)
return new_angle
async def collision(game: PongGame, impact_data: dict) -> bool:
segment: Segment = impact_data.get("segment")
player_hitted = None
for player in game.players:
if (not player.is_connected()):
continue
if (player.rail is segment):
player_hitted = player
break
angle: float
print(impact_data.get("impact"))
if (player_hitted is None):
print("wall")
angle = wall_collision(game.ball.angle, segment)
else:
print("paddle")
angle = await paddle_collision(game, impact_data.get("impact"), player_hitted, impact_data.get("inc_x"), impact_data.get("inc_y"))
if (angle is None):
return False
print((game.ball.angle % (math.pi * 2)) * 180 / math.pi, (angle % (math.pi * 2)) * 180 / math.pi)
game.ball.speed += config.BALL_SPEED_INC
game.ball.angle = angle
return True
async def update_ball(game: PongGame, impact_data: dict):
distance: float = impact_data.get("distance")
time_before_impact: float = distance / game.ball.speed
print(time_before_impact)
await asyncio.sleep(time_before_impact)
hit: bool = await collision(game, impact_data)
print("HIT" * 10 + str(hit))
if hit:
game.ball.position.location = impact_data.get("impact")
SyncToAsync(game.broadcast)("update_ball", game.ball.to_dict())
def get_sign(num: float) -> int:
if (num == 0):
return 0
if (num > 0):
return 1
if (num < 0):
return -1
def get_derive(segment: Segment) -> float:
if (segment.start.x == segment.stop.x):
return None
return (segment.stop.y - segment.start.y) / (segment.stop.x - segment.start.x)
def get_intercept(derive: float, point: Point) -> float:
if (derive is None):
return None
return point.y - (point.x * derive)
def get_constant(segment: Segment) -> float:
return segment.start.x
def identify(segment: Segment) -> str:
if (segment.start.x == segment.stop.x):
return VERTICALLY
return NORMAL
def get_interception(segment1: Segment, segment2: Segment):
if (identify(segment1) == VERTICALLY and identify(segment2) == VERTICALLY):
return None
# because of in matematics world y = 10 is above y = 5 and on a display it is inverted I invert the coordonate
inverted_segment1 = Segment(Point(segment1.start.x, config.MAP_SIZE_Y - segment1.start.y), Point(segment1.stop.x, config.MAP_SIZE_Y - segment1.stop.y))
inverted_segment2 = Segment(Point(segment2.start.x, config.MAP_SIZE_Y - segment2.start.y), Point(segment2.stop.x, config.MAP_SIZE_Y - segment2.stop.y))
if (identify(segment1) == NORMAL and identify(segment2) == NORMAL):
# representation m * x + p
m1 = get_derive(inverted_segment1)
m2 = get_derive(inverted_segment2)
p1 = get_intercept(m1, inverted_segment1.start)
p2 = get_intercept(m2, inverted_segment2.start)
# m1 * x + p1 = m2 * x + p2
# m1 * x = m2 * x + p2 -p1
# m1 * x - m2 * x = p1 - p2
# x * (m1 - m2) = p1 - p2
# x = (p1 - p2) / (m1 - m2)
if (m1 == m2):
return None
# reinvert
x: float = (p1 - p2) / (m1 - m2) * (-1)
y: float = config.MAP_SIZE_Y - (m1 * x + p1)
else:
if (identify(inverted_segment1) == VERTICALLY):
constant: float = get_constant(inverted_segment1)
m: float = get_derive(inverted_segment2)
p: float = get_intercept(m, inverted_segment2.start)
else:
constant: float = get_constant(inverted_segment2)
m: float = get_derive(inverted_segment1)
p: float = get_intercept(m, inverted_segment1.start)
x: float = constant
y: float = config.MAP_SIZE_Y - (m * x + p)
impact: Point = Point(x, y)
return impact
def get_impact_data(segments: list[Segment], ball: Ball) -> dict:
cos: float = round(math.cos(ball.angle), 6)
sin: float = round(math.sin(ball.angle), 6)
inc_x: float = (-1) * get_sign(cos) * (config.STROKE_THICKNESS + config.BALL_SIZE / 2)
inc_y: float = get_sign(sin) * (config.STROKE_THICKNESS + config.BALL_SIZE / 2)
point: Point = Point(ball.position.location.x + cos, ball.position.location.y - sin)
ball_segment = Segment(ball.position.location, point)
closest: dict = None
for segment in segments:
segment_with_padding = segment.copy()
segment_with_padding.start.x += inc_x
segment_with_padding.stop.x += inc_x
segment_with_padding.start.y += inc_y
segment_with_padding.stop.y += inc_y
impact: Point = get_interception(segment_with_padding, ball_segment)
if (impact is None):
continue
diff_x: float = ball.position.location.x - impact.x
if (get_sign(diff_x) == get_sign(cos) and cos != 0):
continue
diff_y: float = (ball.position.location.y - impact.y)
if (get_sign(diff_y) != get_sign(sin) and sin != 0):
continue
distance: float = impact.distance(ball.position.location)
if (closest is None or distance < closest.get("distance")):
closest = {
"inc_x": inc_x,
"inc_y": inc_y,
"impact": impact,
"segment": segment,
"distance": distance,
}
return closest
async def render_ball(game: PongGame):
segments: list[Segment] = [player.rail for player in game.players] + game.walls
while True:
impact_data: dict = get_impact_data(segments, game.ball)
await update_ball(game, impact_data)
async def async_routine(game: PongGame):
#TODO DEBUG collision
ball_routine = asyncio.create_task(render_ball(game))
while True:
if game.stopped:
ball_routine.cancel()
return
await asyncio.sleep(0.05)
def routine(game: PongGame):
asyncio.run(async_routine(game))